Non-planar chip technology

- **Active area**: n zone top, p zone bottom
- **Large active area** (e.g., Melf ~ 1.69 mm²)

⇒ **Advantages**
- High pulse capability
- High power dissipation
- High admissible zener current (Z-diodes)

Assembly: plastic package

- Chip soldered to contacts, molded with duroplast (UL94V-0)
- High reliability and good heat transfer

Application

- High currents/power/voltages
 - MiniMELF case
 - ZMD1...100 (1 W Zener)
 - GL1A...M (1 A, 50...1000 V)
 - MELF case
 - ZMY1...200 (1.3 W Zener)
 - SMZ1...200 (2 W Zener)
 - SZ3C1...200 (3 W Zener)
 - SM513...2000 (1 A, 1.3...2 kV)

Planar chip technology

- **Active area**: p and n zone within one planarity
- **Small active area** (e.g., Melf ~ 0.36 mm²)

⇒ **Advantages**
- Low junction capacity
- Low leakage current, sharp curve even for Z-diodes with V_z < 6.8 V

Assembly: glass package

- Chip pressure contacted, within glass tube
- Simple assembly, but disadvantage in heat transfer

Application

- Small power/small signal diodes
 - MiniMELF case
 - ZMM1...100 (500 mW Zener)
 - LL4148 (200 mA, 100 V)
 - MELF case
 - ZMY1G...100G (1 W Zener)